Command Palette

Search for a command to run...

Department of Mechanical & Industrial Engineeringcoretheory

FINITE ELEMENT METHODS

MIE 3122

Syllabus

  • 01Introduction to Finite Element Method
  • 02steps of FEM
  • 03advantages/disadvantages and applications of FEM
  • 04discretization and element types
  • 05matrix algebra
  • 06efficient storage of Banded matrices
  • 07matrix solution methods for system of simultaneous equations
  • 08Eigen value problem
  • 09one/two point Gauss quadrature method of numerical integration
  • 10basics of theory of elasticity
  • 11plane stress/plane stress/axisymmetric problems
  • 12minimum potential energy principle
  • 13Rayleigh-Ritz's method
  • 14Galerkin's method
  • 15Basic concepts of FEM
  • 16convergence
  • 17Pascal's triangle
  • 18higher order quadrilateral/triangular elements
  • 19shape functions for Lagrange/Serendipity elements and CST element
  • 20application of direct stiffness method for one dimensional axially loaded bar and for one dimensional fluid element
  • 21Elimination and Penalty methods of handling boundary conditions
  • 22isoparametric formulation of 1D bar element
  • 23plane/space truss element
  • 24plane/space frame element
  • 25triangular element
  • 26quadrilateral element
  • 27axisymmetric triangular element
  • 28tetrahedral and hexahedral elements
  • 29Application of the Galerkin's residual method to 1-D structural problem

References

  • Chandrupatla T. R. and Belegundu A. D., Introduction to Finite Elements in Engineering, Pearson Education, New York, 2001.
  • Logan Daryl L., A First course in Finite Element Method, 4th ed., Thompson Ltd, India, 2007.
  • Hutton David V., Fundamentals of Finite Element Analysis, Tata McGraw Hill, India, 2005.
  • Reddy J. N., An Introduction to Finite Element Method, 3rd ed., McGraw Hill International Edition, New York, 2006.
  • Segerlind Larry J., Applied Finite Element Analysis, 2nd ed., John Wiley, New York, 1984.
  • Desai C. S. and Abel J. F., Introduction to the Finite Element Method: a numerical method for engineering analysis, Van Nostrand Reinhold Co., 1971.
  • Krishnamoorthy C. S., Finite Element Analysis – Theory & Programming, Tata McGraw-Hill Education, 1994.
Credits Structure
3Lecture
0Tutorial
0Practical
3Total